
Assessment of Different Coding Units Usage in
VVC Inter-Frame Prediction

Ramiro Viana1,2, Fernando Sagrilo3, Marta Loose1, Gustavo Sanchez4, Guilherme Corrêa1, Luciano Agostini1
1Video Technology Research Group (ViTech), UFPel, Pelotas/RS, Brazil

2Electronic Engineering, UFPel, Pelotas/RS, Brazil
3Graduate Program in Electrical Engineering (PPGEE), UNIPAMPA, Alegrete/RS, Brazil

4Federal Institute of Sertão Pernambucano (IFSertaoPE), Salgueiro/PE, Brazil
{rgsviana, marta.breunig, gcorrea, agostini}@inf.ufpel.edu.br,

fernandosagrilo.aluno@unipampa.edu.br, gustavo.sanchez@ifsertao-pe.edu.br

Abstract—With the increasing demand for video transmission
through streaming platforms, as well as social media, video
encoding has become something that increasingly needs new
developments and improvements. This paper presents an inves-
tigation related to the different coding unit (CU) sizes that are
encoded within the Versatile Video Coding (VVC) inter-frame
prediction, specifically in the Unidirectional, Bidirectional and
Affine Motion Estimation (ME), when multiple high-resolution
videos were encoded and the reached results were evaluated. In
this investigation, the number of samples encoded with each CU
size, as well as the time necessary to encode each CU size, are
shown and discussed, in order to support future developments
targeting the efficiency increase or the computational effort
decrease in the inter-frame prediction of the VVC standard.
Considering the reached results, the main conclusion is that
Affine is the ME tool that takes the longest time to be completed,
even being used to encode much less samples than Unidirectional
and Bidirectional ME together. The reached results also showed
that the relative use of the Affine ME inside the VVC inter-
frame prediction is inversely proportional to the video resolution.
Finally, the relative use of different CU sizes to encode the video
samples present a similar behavior for different resolutions and
encoding tools.

Index Terms—Video Encoding, Motion Estimation, Block Size,
Unidirectional, Bidirectional, Affine.

I. INTRODUCTION

In recent years, the demand for access to digital videos has
intensified a lot, mainly due to the constant rise in the use
of the Internet [1]. Another factor for this increasing demand
was the Covid-19 pandemic which boosted the remote work
and study, as well as the various streaming platforms available
for entertainment. For these reasons, efficient ways to encode
videos are been developed in order to support this increased
demand for video transmission [2].

The video encoding process consists of several distinct steps
and tools working together to encode each frame of a video
to reduce the amount of redundant data in the representation
of video information, exploring spatial redundancy, temporal
redundancy, and entropy redundancy [3].

The state-of-the-art standard for video encoding is the
Versatile Video Coding (VVC) [4]. Despite presenting a lot of
required computational effort, VVC provides high compres-
sion ratios [5] [6], being superior to other encoders available
on the market in terms of compression efficiency [2].

In VVC, the video to be encoded is firstly partitioned into
blocks called Coding Tree Units (CTU) [7] and each CTU
can have from 32x32 to 128x128 samples. Each CTU is the
root of a Quadtree with a nested multi-type tree (QTMT), a
complex structure used to further divide the CTU into blocks
called Coding Units (CU). The CUs are used to better adapt
the coding process to the image features [8]. The CTU can
be split into quaternary, ternary, and binary partitions and the
VVC allows the use of 28 different CU sizes when encoding
each CTU. The CUs are the frame blocks that are, in fact,
encoded.

VVC is a hybrid encoder, which means that each CU will be
predicted through an inter-frame or an intra-frame prediction,
and the prediction residues are then transformed and quantized
and, finally, the quantized information is processed by the
entropy encoder to finish the coding process [9]. The encoder
also has inverse quantization and transforms steps, as well as
a filter step and these steps are necessary to guarantee that
encoder and decoder will use exactly the same references.
Since quantization is a lossy process, then the encoder will
not use the original frame as a reference for future encoding,
but the reconstructed frame [10].

VVC brings a lot of novelties in each one of these steps
when compared with previous standards. The very high com-
putational cost of VVC is due to the high number of CU sizes
and encoding tools which are available, since all combinations
must be evaluated to define the best one to encode that frame
region [10].

This paper is focused on the VVC inter-frame prediction,
more specifically on the three most important encoding tools
of this step: Unidirectional, Bidirectional, and Affine Motion
Estimation. This paper presents an investigation of the dif-
ferent CU sizes use during these inter-frame prediction tools,
including the number of samples encoded with each CU size
for each one of these three encoding tools and also the time
spent to encode each CU size.

II. VVC INTER-FRAME PREDICTION

The inter-frame prediction exploits temporal redundancy in
the video sequence by predicting the current frame CUs using
other frames previously encoded frames from the video [5]



Fig. 1. VVC ME Flowchart

[11]. The most important step inside the inter-frame prediction
is the Motion Estimation (ME), focus of this work. ME tries
to find, inside the reference frames, which block is the best
one to be used to predict the current CU, called ”the best
match” [12]. Naturally, this process requires a high level of
computational effort. VVC Motion Estimation is composed of
three main tools: Unidirectional ME, Bidirectional ME, and
Affine ME [13].

The Unidirectional Motion Estimation is the basic ME mode
and is present in all previous video encoders with inter-frame
prediction. This tool can use one or more reference frames
to find the best match, but in a direct way, then, the blocks
inside of each reference frame are compared with the current
CU and the best one is selected. To reduce the complexity
of this process, a search area is defined around the collocated
block inside the reference frame (the one in the same position
as the current CU) [14]. The VTM implements the Test Zone
Search (TZS) ME algorithm [15] in this step. The Bidirectional
Motion Estimation can use two blocks in two different frames
to generate the prediction. But all other processes are similar
to those ones used in the Unidirectional ME. The Bidirectional
ME is effective for video sequences where there are fast
movements, panning cameras, zooming and scene changes
[13].

Both, Unidirectional and Bidirectional ME are focused
on translational movements in the objects inside a scene,
and all available CU sizes can be used in both ME tools.
The Affine Motion Estimation (AME) is one of the main
innovations of VVC in relation to other video encoders. It
maps the non-translational movements of the objects in scenes,
such as scaling, rotation, and zooming, improving the coding
efficiency [14].

The VVC AME is applied in two configurations: with 4-
parameters or with 6-parameters. The first one is used to model
simpler movements, like scaling and rotation. The second one
is used to map more complex movements, like shearing [6] [7].
Considering the higher computational effort required in the
Affine ME, only CUs equal to or larger than 16 × 16 samples
can be used in this ME tool. Fig. 1 shows the sequence of use
of these ME tools inside a VVC encoder.

III. EXPERIMENTAL METHODOLOGY

The experiments were done using the VVC reference soft-
ware, called VVC Test Model (VTM) [16], version 14.0. This
work used the Random-Access configuration, since the main
goal is to evaluate the inter-frame prediction. The Quantization

Parameters (QPs) used were 22, 27, 32 and 37, as defined by
the Common Test Conditions (CTCs) [17].

Fifteen videos with three different resolutions were used
and the first 32 frames of these videos were considered.
These videos are form the UVG dataset [18] and the NETVC
dataset [19]. The videos were divided in three resolutions:
HD (1280×720), Full HD (1920×1080) and 4K Ultra HD
(3840×2160). The HD sequences were Dark, Netflix Driv-
ingPOV, Vidyo4, Netflix DinnerScene, and KristenAndSara.
The Full HD sequences were Netflix TunnelFlags, Jockey,
Beauty, Touchdown Pass, and Rush Field Cuts. Finally, 4K
Ultra HD sequences were ToddlerFountain, SunBath, Lips,
BuildingHall2 and Netflix Dancers. All videos were encoded
four times, once for each QP value.

The VVC VTM was modified to allow the extraction of the
required information necessary for the assessment presented in
this paper. These insertions were done inside the EncCu.cpp
VTM file. The information was extracted for the four ME
stages: Unidirectional, Bidirectional, 4-parameters Affine and
6-parameters Affine.

These experiments were run in a computer with a Intel Xeon
E5-2650v4 2.20 GHz processor, 96 GB of DDR4 memory and
a 2 TB SSD and required a total of 168 hours of execution. In
a total, more than one hundred million CUs were registered
to support the assessment presented in this paper.

The results for Unidirectional and Bidirectional ME were
grouped and analyzed together since these tools have similar
behavior and are present in other encoders. The two modes of
Affine ME, with 4 and 6-parameters, were also grouped and
analyzed together, since their behavior are similar.

To make the assessment more understandable, the CU sizes
were grouped according to the number of samples they have.
CU sizes grouping is shown in Table I, where the column
”Weight” was defined as the number of samples inside each
CU divided by 16, only to simplify the analysis presented in
the next section of this paper.

After the encoding of all sequences with the four QPs,
the features were extracted and the final results were reached
following the steps below:

• The averages of usage as the best match and of the time
spent to encode all CU sizes for each video and for the
four QPs were calculated, considering the two groups of

TABLE I
CU SIZE GROUPING

Group CU Sizes Weight
1 4×8 8×4 2
2 4×16 8×8 16×4 4
3 4×32 8×16 16×8 32×4 8
4 4×64 8×32 16×16 32×8 64×4 16
5 8×64 16×32 32×16 64×8 32
6 16×64 32×32 64×16 64
7 32×64 64×32 128
8 64×64 256
9 64×128 128×64 512

10 128×128 1024



tools: (i) Unidirectional and Bidirectional ME and (ii)
Affine ME;

• Then, these averages of usage and time were grouped
according to the video resolutions and new averages were
calculated, again considering the two group of ME tools;

• Then, the averages of each CU size were added according
to their weight, considering the 10 groups defined in Table
I, for each resolution and for each ME tool group;

• Finally, the number of samples inside each CU were
multiplied by the average usage of each group of CUs,
to generate the average number of samples encoded with
that group of CUs.

IV. RESULTS AND DISCUSSION

The reached results of encoded samples using each group
of CU sizes, considering the method presented in the previous
section, are summarized in Fig. 2, with one graph for each
group of sequences in each one of the three resolutions focused
in this investigation: HD, Full HD and Ultra HD. The X-
axis of these graphs presents ”Weight” defined in Table I,
indicating the groups of CU sizes. The Y-axis presents the
average number of samples encoded in each group of CUs for
each execution (considering the average for the four QPs for
each sequence, and the average of the results for all sequences
with each resolution, as presented in the previous section).
These graphs present, in blue, the results for Unidirectional
and Bidirectional ME and, in red, the results for the two Affine
ME modes.

The first observation related to the results presented in Fig.
2, only confirms that Affine ME is not available for CU groups
with weights up to the value 8 (CU sizes smaller than 16x16),
since this tool does not appear in the graphs for weights up
to 8.

One important conclusion is that Unidirectional and Bidi-
rectional ME have a similar behavior when considering the
relative distribution among the different resolutions, with the
highest number of samples being encoded using CU group
with weights 32 in all cases. Other important conclusion is
that the Affine ME is less used for higher resolutions than for
lower resolutions, in terms of relative use.

Table II shows the average results of samples encoded
with the two groups of ME tools for the three resolutions.
These results are an average for all sequences and all QPs
used to encode these sequences for the three resolutions.
Observing Table II one can conclude that the Affine ME and
the Unidirectional and Bidirectional ME have a balanced use
for HD resolutions, with the Affine being a little bit more used.
But for Full HD and Ultra HD resolutions, the Affine ME is
much less used than the Unidirectional and Bidirectional ME.
Another observation is that as the resolution grows, both tools
tend to be more used and this is an expected result, since there
are more samples to be encoded. But an important conclusion
is that the relative relevance of the Affine ME is as smaller as
higher is the resolution.

Another important analysis is related to the time spent to
encode the CUs for the two group of tools for the three

resolutions. Fig. 3 present graphs with the average results of
encoding time spent for each CU groups weight, in a similar
way of the graphs presented in Fig. 2.

Observing these graphs one can conclude that different
resolutions cause important modification in the distribution
of coding effort for the Unidirectional and Bidirectional ME
among the different groups of CUs, where, as higher is the
resolution, as higher is the effort spent with these tools to
encode the smaller CUs.

Another important conclusion is that even being less used
than the Unidirectional and Bidirectional ME, Affine ME
has a very high computational effort. The relation between
resolution and encoding time is consistent, since the relative
Affine computational effort is higher for lower resolutions,
where this tool is more used to define the best match, as
presented in the previous discussion. But the surprising result
is that the Affine computational effort is higher than the
Unidirectional and Bidirectional effort in many cases. Table
III shows the average encoding time of the two groups of ME
tools for the three resolutions. This table clearly shows that
the time spent to process Affine ME is more than double the
time spent to process Unidirectional and Bidirectional ME for
HD videos, even with the Affine being used to encode three
times fewer CUs, as presented in Table II. The time spent to
encoding the Affine ME is also higher than Unidirectional and
Bidirectional ME for Full HD sequences, and similar for Ultra
HD sequences. In this last case, the times spent are similar,
but the Affine is used to encode only one-eighth of the CUs
if compared with Unidirectional and Bidirectional tools.

V. CONCLUSIONS

This paper presented an investigation about the Unidirec-
tional, Bidirectional and Affine ME of the VVC standard,
when processing three different video resolutions.

Through the results and discussions presented in this paper,
it is possible to conclude that the Unidirectional and Bidi-
rectional ME are used to encode much more samples than
the Affine ME, but require a smaller computational effort,
regardless the video resolution. The presented results also
allowed a conclusion that as higher is the video resolution, as

TABLE II
AVERAGE SAMPLES ENCODED WITH THE TWO GROUPS OF ME TOOLS FOR

THE THREE RESOLUTIONS

Resolution Unidirectional and Bidirectional Affine
HD 71,747,066 75,778,708

Full HD 660,475,022 498,660,097
Ultra HD 1,329,027,202 772,402,364

TABLE III
AVERAGE ENCODING TIMES OF THE TWO GROUPS OF ME TOOLS FOR THE

THREE RESOLUTIONS

Resolution Unidirectional and Bidirectional (s) Affine (s)
HD 33.37 79.70

Full HD 383.03 500.96
Ultra HD 778.42 738.24



Fig. 2. Average number of samples encoded with each group of CU sizes in HD, Full HD and Ultra HD videos

Fig. 3. Time spent to encode the groups of CU sizes in HD, Full HD and Ultra HD videos

lower is the relative use of the Affine ME in comparison with
Unidirectional and Bidirectional ME. On the other hand, the
relative use of different CU sizes does not present a significant
change for different resolutions and encoding tools.

The results presented in this paper clearly point to new
research opportunities related to the high complexity of the
Affine ME. Then, novel solutions focused on reducing the en-
coding effort for this encoding tool tends to generate important
impacts on the whole encoder.

ACKNOWLEDGMENT

The authors of this work would like to thank the Con-
selho Nacional de Desenvolvimento Cientı́fico e Tecnológico
- CNPq for funding this research.

REFERENCES

[1] Kai Zhang, Li Zhang, Hongbin Liu, Jizheng Xu, and Yue Wang,
“Interweaved prediction for affine motion compensation,” in 2019 IEEE
International Conference on Image Processing (ICIP), 2019, pp. 3158–
3161.

[2] Seishi Takamura, “Versatile video coding: a next-generation video
coding standard,” NTT Technical Review, vol. 19, no. 6, 2019.

[3] Iain E. Richardson, The H.264 Advanced Video Compression Standard,
WILEY, 2010.

[4] Ticao Zhang and Shiwen Mao, “An overview of emerging video coding
standards,” GetMobile: Mobile Comp. and Comm., vol. 22, no. 4, pp.
13–20, May 2019.

[5] Mário Saldanha, Marcel Corrêa, Guilherme Corrêa, Daniel Palomino,
Marcelo Porto, Bruno Zatt, and Luciano Agostini, “An overview of
dedicated hardware designs for state-of-the-art av1 and h. 266/vvc video
codecs,” in 2020 27th IEEE International Conference on Electronics,
Circuits and Systems (ICECS). IEEE, 2020, pp. 1–4.

[6] Benjamin Bross, Ye-Kui Wang, Yan Ye, Shan Liu, Jianle Chen, Gary J.
Sullivan, and Jens-Rainer Ohm, “Overview of the versatile video coding
(vvc) standard and its applications,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 31, no. 10, pp. 3736–3764, 2021.

[7] Jens Brandenburg, Adam Wieckowski, Tobias Hinz, Anastasia Henkel,
Valeri George, Ivan Zupancic, Christian Stoffers, Benjamin Bross, Heiko
Schwarz, and Detlev Marpe, “Towards fast and efficient vvc encoding,”
in 2020 IEEE 22nd International Workshop on Multimedia Signal
Processing (MMSP), 2020, pp. 1–6.

[8] Seongwon Jung and Dongsan Jun, “Context-based inter mode decision
method for fast affine prediction in versatile video coding,” Electronics,
vol. 10, no. 11, 2021.

[9] Heiko Schwarz, Muhammed Coban, Marta Karczewicz, Tzu-Der
Chuang, Frank Bossen, Alexander Alshin, Jani Lainema, Christian R.
Helmrich, and Thomas Wiegand, “Quantization and entropy coding
in the versatile video coding (vvc) standard,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 31, no. 10, pp. 3891–
3906, 2021.

[10] Mathias Wien, High Efficiency Video Coding – Coding Tools and
Specification, 10 2014.

[11] Thomas Amestoy, Alexandre Mercat, Wassim Hamidouche, Daniel
Menard, and Cyril Bergeron, “Tunable vvc frame partitioning based on
lightweight machine learning,” IEEE Transactions on Image Processing,
vol. 29, pp. 1313–1328, 2020.

[12] Adson Duarte; Paulo Gonçalves; Luciano Agostini; Bruno Zatt; Guil-
herme Correa; Marcelo Porto; Daniel Palomino, “Fast affine motion
estimation for vvc using machine-learning-based early search termina-
tion,” IEEE International Symposium on Circuits and Systems (ISCAS),
pp. 1–5, 2022, (accepted paper).

[13] Paulo Henrik Ribeiro Gonçalves, “Um esquema rápido baseado em
aprendizado de máquina para a predição interquadros do codificador de
vı́deo vvc.,” Dissertação (mestrado em ciência da computação), Centro
de Desenvolvimento Tecnológico, Universidade Federal de Pelotas,
Pelotas, 2021.

[14] Sang-Hyo Park and Je-Won Kang, “Fast affine motion estimation for
versatile video coding (vvc) encoding,” IEEE Access, vol. 7, pp. 158075–
158084, 2019.

[15] Xufeng Li, Ronggang Wang, Wenmin Wang, Zhenyu Wang, and Shengfu
Dong, “Fast motion estimation methods for hevc,” in 2014 IEEE
International Symposium on Broadband Multimedia Systems and Broad-
casting, 2014, pp. 1–4.

[16] Karsten Suehring, “Vtm-14.0,” https :
//vcgit.hhi.fraunhofer.de/jvet/V V CSoftwareV TM/ −
/releases/V TM − 14.0, Aug. 2021, Accessed: 2021-12-10.

[17] Frank Bossen, Jill Boyce, Karsten Suehring, Xiang Li, and Vadim Sere-
gin, “Vtm common test conditions and software reference configurations
for sdr video,” 10 2020.

[18] Alexandre Mercat, Marko Viitanen, and Jarno Vanne, “UVG dataset,”
in Proceedings of the 11th ACM Multimedia Systems Conference. may
2020, ACM.

[19] Thomas Daede; Andrey Norkin; Ilya Brailovskiy, “Video codec test-
ing and quality measurement,” https://tools.ietf.org/id/draft-ietf-netvc-
testing-08.html, Jan. 2019, Accessed: 2022-02-22.


